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Spatial statistics of particles and corrosion pits 
in 2024-T3 aluminium alloy 
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Corrosion pits in aluminium alloys nucleate and grow in the proximity of constituent 
particles. Descriptions of the spatial statistics of the particles and pits are critical for 
stochastic modelling of corrosion. Statistical models, which are generalizations of 
a hard-core sequential inhibition process, are proposed. The models include the effects of 
randomness in the number, the locations, and the sizes of the features. The applicability of 
the models are based on experimental data taken from 2024-T3 aluminium alloy specimens 
subjected to a 0.5 M NaCI environment. The observed constituent particles tend to be 
clustered, whereas the subsequent corrosion pits tend towards regularity as measured by 
nearest neighbour spacing. 

1. Introduction 
Pitting corrosion in aluminium alloys is recognized 
as one of the significant degradation mechanisms 
that impacts the reliability, durability, and integrity of 
both military and commercial aircraft. Pitting cor- 
rosion typically is the precursor to rather complex 
damage processes such as corrosion fatigue crack in- 
itiation and growth; however, it is a complex process 
in its own right. Corrosion pits nucleate and grow 
where constituent particles can serve as local galvanic 
cells. The nucleation and growth processes of pits 
are stochastic processes which depend upon many 
intricate material properties, the applied loading, 
and the environmental conditions. Thus, the random 
evolution of the number of pits and their sizes is an 
extremely complicated process. This random process 
can be considered as a special case of the general class 
of stochastic processes known as nearest neighbour 
processes. Nearest neighbour processes have been 
studied extensively in the statistics literature; see the 
books by Ripley [1], Diggle [2], Stoyan et al. [3], and 
Cressie [43, for example. 

The conventional wisdom is that the materials 
which are weaker or have shorter times to failure are 
those for which excessive clustering of pits or very 
large pits occur. The purpose of this work was to 
adapt modelling techniques from nearest neighbour 
methods in spatial statistics to gain insights into the 
random locations of constituent particles and sub- 
sequent corrosion pits in aluminium alloys. Thus, the 
goal was to produce a methodology for statistically 
analysing the random position of particles and pits 
which can be incorporated into models for corrosion 
fatigue crack initiation and growth. 

The material considered was 2024-T3 aluminium 
alloy. Each specimen was polished on a surface in the 
rolling direction, and its constituent particles were 

observed prior to exposure to the environment. The 
specimen then was placed in a 0.5 M NaC1 solution for 
some prescribed time, after which the corrosion pits 
were observed and measured by optical microscopy. 
Five different specimens were considered: a typical 
polished specimen prior to any exposure to the envi- 
ronment, and four specimens exposed to the environ- 
ment for 10, 24, 42, and 72 h, all at a temperature of 
40 ~ 

Typically polished sections of the 2024-T3 alloy, 
used in this work, were observed to contain approxim- 
ately 3000 particles, with an area of at least 1 gm 2, 
per ram-2. The particles are either anodic relative to 
the aluminium matrix, in which case they dissolved, or 
cathodic relative to the matrix, in which case the 
matrix dissolved. There were about three times more 
anodic particles than cathodic particles for the obser- 
vations herein. Because the primary purpose of this 
work was to study the spatial statistics of the constitu- 
ent particles and the subsequent corrosion pits, further 
material characterization was not required. A detailed 
discussion of the properties of this alloy is given else- 
where [5]. 

2. Spatial point processes 
In the last two decades, there has been a flurry of 
activity in theoretical and applied statistics for spatial 
point processes [1-4]. A spatial point process is any 
stochastic process that generates a countable set of 
events, xi, in a subset of a two- or three-dimensional 
space. The characterization of the locations of the 
constituent particles and subsequent corrosion pits in 
aluminium alloys is well suited as an application of 
spatial point processes. The first spatial point process 
to be considered is the complete spatial randomness 
(CSR) model. The CSR model implies that the pattern 
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for the centroids of the particles or pits are uniformly 
distributed over the target area. The basic assumption 
for this model is that each feature may be considered 
to be a single point, i.e. the area of the feature may be 
neglected. If the features are sufficiently disperse, or if 
their areas are sufficiently small, then this assumption 
may be reasonable; however, features from most ap- 
plications rarely satisfy these conditions. The domi- 
nant reason for considering the CSR model is that the 
underlying stochastic process is a spatially homogene- 
ous Poisson process which uniquely serves as a stan- 
dard of comparison for all other spatial processes. 

Fig. 1 contains typical micrographs of a polished 
specimen and a specimen after exposure to the corros- 
ive environment. Even a casual observation of Fig. 1 is 
sufficient to reject the CSR model assumption that the 
feature may be considered simply as points consisting 
of no area. Thus, the CSR model is not appropriate. 
The next assumption typically included in modelling 
of spatial features is that each feature is shaped regu- 
larly, and the shape can be estimated by the observed 
cross-sectional area. Again, neither the particles nor 
the pits in Fig. 1 are shaped regularly. In fact, there are 
a variety of different shapes. Ultimately more general 
shapes should be considered in the model; however, 
the initial analysis will assume regularity. 

During the evolution of an individual pit, it may 
continue to grow, or it may coalesce with another pit. 
Under any given conditions when an optica ! image is 
taken, it is impossible to determine the stage of the 
evolution process for the pits. If Fig. 1 is considered 
carefully, the features appear to be distinct, for the 
most part. Thus, a hard-core model may be appropri- 
ate to model the pit locations. A hard core model 
[1~4] is one in which the point pattern generated from 
the underlying stochastic process consists of non- 
intersecting areas. There are several types of hard- 
core models, but the form to be considered here is 
a generalization of the simple sequential inhibition 

(SSI) model [61. Even though the SSI model is one of 
the more tractable models, it is still sufficiently com- 
plex that explicit statistical modelling is typically in- 
tractable. One way in which to approach the problem 
is to employ implicit modelling. An implicit model is 
one in which the probability distribution functions are 
intractable. A common method of statistical inference 
for an implicit model is through the use of Monte 
Carlo simulations E7]. In general, the implicit statist- 
ical model, described in enough detail, is simulated 
repeatedly, and the results are matched to experi- 
mental data. If the data conform to some prescribed 
statistical test, generated from the simulation, then the 
model is assumed to be representative of the underly- 
ing physical process. Obviously, the implicit statistical 
model should not be unduly complex. The more 
simple model which approximates the data is to be 
preferred. In the remainder of this paper, the general 
properties of spatial point processes needed in the 
modelling will be given, generalizations of the SSI 
model will be applied to the data, and a discussion 
with conclusions will follow. 

3. Analysis of sampled patterns 
The spatial point processes for constituent particles 
and corrosion pits are assumed to be stationary, in- 
variant under arbitrary translations, and isotropic, 
invariant under arbitrary rotations. The practical im- 
plication of stationarity is that replication within 
a single set of data is possible in disjoint subsections of 
the target. Isotropy simply means that vector differ- 
ences between events can be represented by scalars. 
Both of these assumptions are reasonable because the 
environment is uniform over the entire specimen. 

The most commonly used properties to describe 
a stationary and isotropic spatial point process are the 
first-order and second-order properties. The first- 

Figure 1 Typical scanning electron micrographs of 2024-T3 aluminiurn alloy (a) before and (b) after exposure to 0.5 M NaC1 solution for 72 h 
at 40 ~ 
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order properties are given by the intensity, )~, which is 
defined as 

)~ =E(number  of events, i.e. features, per unit area) 
(1) 

where El- ] is the expectation operator. The second- 
order properties are given by the second reduced 
moment function, K(t), one definition of which is 

K(t) = E (number of additional events within distance 
t of an arbitrary event)/)~ (2) 

Because )~ and K(t) are both defined as expectations, 
they do not completely characterize the underlying 
random process. Nevertheless, they do restrict the 
number of models which can serve to represent the 
data. The motivations for considering )~ and K(t) are 
two-fold. First, both 2 and K(t) can be estimated 
rather easily from data, and the statistic is superior to 
others used for point processes. Second, they are applic- 
able for an extremely wide range of point processes. 

Ripley 1-8] introduced an estimator for K(t) which is 
effective for a wide range of applications. Let n be the 
number of observed events in a region A, and let IAI be 
the area of the field of observation. Then the estimator 
for K(t) is given as follows 

~:(t) = n -  21AI ~ ~" w~ llt(uij) (3) 
i , / - j  

where It(u) is the indicator function defined by 

l, i f  u< . t  
It(u)= O, i f  u > t (4) 

The term uij is the distance between events i and j, and 
wlj is the proportion of the circumference of the circle 
centred at event i with radius uij which is contained 
within A. Equation 3 is an approximately unbiased 
estimator for sufficiently small t because n/[A[ is 
a slightly biased estimator for 2. The restriction on t is 
necessary because vv~l ~ oe as t increases. In most 
applications, it is the local interactions between events 
that are of interest so that the restriction of small t, in 
fact, poses no problem. Fortunately, an explicit for- 
mula exists for w~2 when the field of observation is 
rectangular. Diggle ]_-2] gives further details including 
the explicit equation required for wi2. 

Because second-order properties do not uniquely 
define a process, another description for the point 
process is in order. There are several candidates, but 
one of the more natural is the empirical distribution 
function (edf) G(y) defined by 

G(y) = Pr(distance fl'om an arbitrary event to its 
nearest neighbour is at most y) (5) 

Ripley l-9] introduced the following unbiased es- 
timator for G(y). For 1 ~< i ~< n, let y~ be the distance 
from each event to its nearest neighbour in A, and let 
d~ be the shortest distance from each event to the 
boundary of A. Then the estimator for G(y) is given by 

~(y) = ~ (y, ~ y and d i> y) (6) 
(di > y) 

where # (  ) is the counting function which tallies the 
number of events in the specified set. 

The primary test for the spatial statistics models for 
the constituent particles and the corrosion pits will 
involve a comparison of the estimate of K(t) for the 
data with estimates of K(t) from simulated realizations 
of the correspondingly proposed model. Secondarily, 
another test will be the compatibility of estimates of 
G(y) from both the data and the simulated realiz- 
ations. These tests are applied below in a series of 
progressively more complicated attempts at modelling 
the spatial statistics of the features. 

4. Modelling the spatial statistics 
of constituent particles 
and corrosion pits 

A few comments about the physical parameters which 
influence the nucleation and growth of corrosion pits 
are in order. Given a specimen, the statistics from 
a spatial point process can only model the specific 
pattern, and as such, the physical parameters are im- 
plicit in the modelling. However, it is manifest that 
other quantities have a profound effect on the kinetics 
of pit growth. In order statistically to correlate these 
types of key parameters with the observed spatial 
point process, several critical experiments should be 
conducted. The purpose of this work was to focus on 
modelling the observed point process, and conse- 
quently, modelling the entire evolution process is de- 
ferred. 

In order to gain an appreciation for the spatial 
locations of particles and pits, Fig. 2a shows a sche- 
matic representation of the particles observed on 
a polished specimen, and Fig. 2b is similar for the 
corrosion pits on another specimen, which had been 
exposed to 0.5 M NaC1 solution for 42 h at 40 ~ The 
figures were constructed by placing a circular disc, 
centred at the centroid of the particle or pit, with area 
equal to the measured area. Although neither the 
particles nor the pits are actually circular in shape, 
Fig. 2 is intended to illustrate the randomness in the 
number, size, and location of the features observed on 
typical 2024-T3 specimens. In both representations 
there are a few features which appear to intersect. This 
is an artefact of the assumption of circular features 
rather than reality. It is clear from Fig. 2 that constitu- 
ent particles and corrosion pits exhibit quite different 
spatial patterns; however, notice that it is nearly im- 
possible to describe adequately the patterns of the 
features from observations alone. Certainly, there is 
no apparent spatial structure. Thus, the need for stat- 
istical modelling is manifest. 

The centroid data were used to calculate the value 
of K(t) from Equation 3 for the spatial point process, 
and the results for all five specimens are given in 
Fig. 3. For the CSR model, K(t) can be found explicit- 
ly, and it is given by 

K ( t )  = ~ t  2 (7) 

Thus, the vertical scale has been normalized so that 
the diagonal line is characteristic of the CSR model. 
Thus, the normalized reduced second moment 
measure is defined as [K(t)/~] 1/2. The four data sets 
for the corrosion pits all exhibit similar behaviour in 
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Figure 2 Schematic representations of 2024-T3 aluminium alloy 
specimens showing (a) constituent particles on a polished section 
and (b) corrosion pits formed after exposure to 0.5 M NaC1 solution 
for 42 h at 40 ~ 

that the estimated curves fall well below the diagonal 
for all values of t. This implies that the centroids of the 
pits tend to exhibit regularity as opposed to clustering. 
This observation is consistent with typical corrosion 
pitting because particles which are quite close coalesce 
fairly early in the corrosion process to form a larger 
pit. Thus, pitting tends to encompass clustered par- 
ticles. On the other hand, the estimate of K(t) for the 
polished specimen is well above the diagonal for most 
of the range. Qualitatively, this implies that particles 
tend to be more clustered. The fact that the lower tail 
falls below the diagonal may be partially due to 
measurement limitations of the optical microscopy. 
Clearly, the character of the spatial statistics of par- 
ticles prior to exposure to the environment is different 
from that for the corrosion pitting process. It is also 
manifest that neither the particle nor the pit data can 
be represented by the CSR model. Consequently, 
a more detailed model is warranted, and furthermore, 

40~ �9 as polished; 216 particles 
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Figure 3 Estimation of K(t) for 2024-T3 aluminium alloy specimens 
before and after exposure to 0.5 M NaC1 solution for 10, 24, 42, and 
72 h at 40 ~ 

it is expected that different models will be required for 
the particle and the pit data. 

As mentioned above, the class of models which is 
assumed for this application consists of the hard-core 
models. This class is for spatial data whose features do 
not intersect. It is granted that this assumption is not 
in accord with the actual evolution process; however, 
at any fixed time, it is not likely that coalescence of pits 
could be observed. Thus, for typical data a hard-core 
model should be close to observations. The hard-core 
model considered herein is a modification of Diggle's 
simple sequential inhibition (SSI) model [6]. The 
modification consists of replacing the geometrical ob- 
jects which have a fixed size and shape, i.e. in Diggle's 
model the objects are discs of constant radius, with 
objects which have a random size and shape. Hence- 
forth, the proposed model will be referred to as the 
random sequential inhibition (RSI) model. 

Because the primary method of analysis for the RSI 
model is by simulation, the various aspects of the 
procedure must be described. There are two key com- 
ponents needed for the construction of the RSI model. 
The first is the selection of the shape and size of the 
objects used to construct this hard-core model. The 
initial attempt is to assume that circular discs with 
random radii are reasonable approximations for both 
types of features. The cumulative distribution func- 
tions (cdf) for the radii are estimated by using the 
measured attributes of the features. The attributes 
considered included the shortest dimension, the lon- 
gest dimension, an equivalent radius calculated from 
the area by assuming a circular shape, and an average 
of the shortest and the longest dimensions. For  the 
data from the corrosion specimens, the best fit to the 
proposed model was obtained using the longest pit 
dimension. On the other hand, the best fit to the other 
model for the polished specimen data resulted in using 
the average of the longest and the shortest particle 
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dimensions. A two-parameter Frechet cdf was fit using 
the standard maximum likelihood estimation (MLE). 
The standard two-parameter Frechet cdf is 

F(x) = exp[ - (x/13)-~3 x ~> 0, ~ > 0, 13 > 0 (8) 

The Frechet cdf was selected because it is the cdf 
associated with the maxima of random variables (rvs) 
which is concentrated on the non-negative reals. A cdf 
based on the maxima of rvs is preferred because it is 
the largest features from which the most severe dam- 
age ensues. The data and the Frechet fits are included 
in Fig. 4 for all five of the specimens considered. The 
Frechet MLE estimates fit the data quite well. The 
estimates for the parameters in Equation 8, the mean 
~t, the coefficient of variation, cv, and the sample size, 
n, for the five specimens are contained in Table I. It 
should be noted that the scatter is quite large for all 
the specimens. This large scatter is an indication that 
the observations for the specimens subjected to the 
environment contain pits which are at all stages in the 
evolution of nucleation and growth. Also, the con- 
stituent particles have a wide range of sizes. It should 
be noted that the mean feature size is increasing as the 
exposure time to the environment increases. 

The second key component in the RSI model re- 
quired for the simulation is the distribution for the 
centres of the circles. This distribution is required for 
the description of the point pattern. However, this is 
not known, and furthermore, it cannot be estimated 
directly. This is the heart of the implicit estimation 
that is needed, the key aspect of the simulation is the 
placement algorithm for the centres. The centre of the 
first circle is uniformly distributed over the entire area, 
and its radius is simulated from its cdf given above. 
The centre of the second circle could be uniformly 
distributed over the entire area minus the area occu- 
pied by the first circle; however, this would not pro- 
duce the desired regularity for the cavities. In order to 
avoid too much clustering, the centres of the simulated 
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Figure 4 MLE estimation of the feature radii using a two-parameter 
Frechet cdf for 2024-T3 after exposure to 0.5 m NaC1 solution. (2]) 
Polished (typical); (�9 10 h, 40 ~ C; (0)  24 h, 40 ~ C; (V) 42 h, 40 ~ C; 
(T) 72 h, 40 ~ 

cavities are to be separated by at least a given distance, 
D. This distance D is estimated by the minimum of the 
distances between all the centroids in the data set. 
Thus, the centre of the second circle is uniformly 
distributed over the original area minus a circular 
region of radius equal to the maximum of the radius of 
the first circle and D. The radius of the second circle, 
again, is simulated from its cdf. If the two simulated 
circles do not intersect, then the algorithm continues. 
If the first and second circles intersect, or if the dis- 
tance between the two centres is less than D, then the 
second circle is discarded entirely, i.e. the centre and 
its radius, and another circle is generated. The algo- 
rithm continues by randomly positioning each suc- 
cessive circle over the remaining available area such 
that it is disjointed from all of the previously posi- 
tioned circles and its centre is at least D units from all 
of the previously simulated circles. Clearly, the num- 
ber of circles needed to be generated in order to 
produce the required pattern of circles is greater than 
the observed number of cavities. The total number of 
simulated circles needed for the polished specimen is 
only about 17% greater than the actual number, but 
for the 72 h, 40 ~ specimen it is about 74% greater. 
The construction algorithm ends when the number of 
circles satisfying the given conditions equals the num- 
ber of observed features. 

The estimates for K(t) and G(y) play a vital role in 
assessing the suitability of the assumed RS! model. 
The final task is the comparison of the simulated 
results with the observed data. The test of the suitabil- 
ity of the implicit model will be a 99% confidence 
interval for the estimates of K(t) and G(y). The 99% 
confidence intervals are estimated from 99 simulations 
of the proposed implicit model. For  each simulation i, 
the estimates ~2i(t) and Gi(Y) are computed. The upper 
and lower confidence bounds are estimated by the 
maximum and minimum of Ki(t) and ~(y)  for 
1 ~< i ~< 99, respectively. Figs 5 and 6 show K(t) and 
G(y) with their confidence bounds, respectively, for the 
42 h, 40 ~ corrosion pit data. First, consider Fig. 5, 
and recall that t is the distance between events. Notice 
that K(t) for the data lies within the estimated confi- 
dence interval over the entire interval for t, even 
though it is quite close for t near 15.5 pm. Based on 
this test, the proposed RSI model is suitable for mod- 
elling the pattern of the locations of corrosion pits. 
Furthermore, the confidence bounds are reasonably 
close which implies that the model is a relatively 
accurate representation of the data. Both the data and 
the RSI model cannot be characterized by the CSR 
model for nearest neighbours, because they deviate 
appreciably from the diagonal. The assumption that 

T A B L E  I Estimated parameter  values for the observed features 
for the five specimens. 

Specimen n & ~(pm) ~t(pm) c,)(%) 

Polished 216 4.45 9.53 11.38 36.6 
10 h, 40 ~ 3t7 3.56 13.12 16.66 50.7 
24 h, 40 ~ 204 4.00 13.75 16.85 42.5 
42 h, 40 ~ 267 3.38 15.59 20.14 55.0 
72 h, 40 ~ 259 2.51 17.94 26.63 101.9 
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corrosion pits are uniformly distributed must be 
rejected. 

An additional statistical test for the model is based 
on the edf G(y) defined in Equation 5 and its estimator 
G(y) given in Equation 6. Fig. 6 is a plot for G(y) for the 
42 h, 40~ data and the corresponding upper and 
lower simulated 99% confidence bounds. These func- 
tions are plotted versus the average of the 99 edfs 
computed from the simulations. Close proximity of 
the curves to the main diagonal indicate that the data 
and the simulated model are reasonably matched. 
For  the most part, G(y) for the data lies within the 

5 1 3 2  

confidence bounds; however, for values in the interval 
(0.48, 0.52), G(y) exceeds the upper confidence bound 
by a very small fraction. This does not disqualify the 
proposed model for the cavity locations, but it does 
indicate that the model may be pushing the sensitivity 
and applicability for the data. Thus, this case clearly 
indicates the merit of more than one statistical test for 
assessing the validity of a model. Based on the statis- 
tics for both K(0  and G(y), the indication is that the 
proposed RSI model is acceptable for the corrosion 
pits. 

Although the RSI models the locations of corrosion 
pits adequately, it is not appropriate for modelling the 
locations of constituent particles. As previously men- 
tioned, the particles on the polished specimen tend to 
exhibit more clustering than the pits during the cor- 
rosion process. Therefore, a further refinement to the 
RSI model is required. The  proposed model adds 
a generalization of a Poisson cluster process to the 
RSI model. The cluster process assumes an underlying 
parent process, with intensity p, from which offspring 
events are randomly generated. The parent process is 
assumed to be a homogeneous Poisson process; conse- 
quently, the parent events will be uniformly distrib- 
uted over the area. Each parent produces a random 
number, S, of offspring events which are assumed to be 
independent and identically distributed according to 
a homogeneous Poisson process with intensity, g. 
Again, at each parent, the offspring are uniformly 
distributed over the parental area. The intensity, X, of 
the resulting cluster process is given by 

X = pg (9) 

This model therefore will be referred to as a cluster 
random Sequential inhibition (CRSI) model. 

The CRSI model will also rely on simulation for 
analysis, with the procedure as follows. Parent events 
are assumed to be circular discs with a deterministic, 
common radius. These discs are placed uniformly over 
the area, using the sequential algorithm previously 
described, such that no two discs intersect. The num- 
ber and size of the parent discs are based on observa- 
tions of the graph of the locations of the particle 
eentroid data. These parameters are related, and they 
affect the resulting amount  of  clustering of the off- 
spring events in the model. Once the parent locations 
have been determined, the simulated offspring events 
are positioned. The offspring events are assumed, as in 
the RSI model, to be circular discs of random size. The 
cdf for the radii is assumed to be a two-parameter  
Frechet distribution given in Equation 8, and it is 
estimated from the average of the longest and shortest 
dimensions of the observed particles. The parameter  
estimates are contained in Table I. The offspring loca- 
tions are determined as follows. A parent is selected at 
random, then an offspring event, with random radius, 
is located uniformly over the parent area. To place the 
second offspring, a parent is again selected at random. 
The offspring then is placed uniformly on the remain- 
ing area, using the RSI algorithm previously de- 
scribed. That  is, the simulation ensures that no two 
offspring intersect and that each offspring is separated 
from all other offspring by a minimum distance, D, 



which is estimated by the minimum distance between 
all of the centroids in the data. This algorithm con- 
tinues until the number of offspring placed is equal to 
the number of observed particles. 

To illustrate the CRSI model, Fig. 7 is a schematic 
representation of one simulation for which there are 
75 parents each with a radius of 35 ~tm. The maximum 
number of offspring per parent is 6. As expected, the 
parents, shown as the light grey circles, have from 0-6 
offspring, which clearly causes some degree of cluster- 
ing. The positioning of the offspring are based on the 
locations of their centroids so that a fraction of the 
offspring area may lie outside the area of the parent. It 
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Figure 7 Schematic representation of a simulation of the cluster 
random sequential inhibition (CRSI) model. 
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should be noted that the parent process and the off- 
spring process are both hard-core processes as the 
above algorithm dictates. 

Comparison of the simulated results with the ob- 
served particle data will again involve the statistics, 
K(t) and G(y). Fig. 8 shows K(t) for the particle data, 
with the upper and lower 99% confidence bounds 
from the proposed model. Note that K(t) for the data 
lies within the estimated confidence interval over the 
entire range of t, which indicates that the CRSI model 
is acceptable for modelling the locations of the par- 
ticles. The comparison based on the edf G(y) lends 
additional support to the applicability of the proposed 
model. Consequently, the proposed CRSI model is 
a suitable choice for modelling the locations of con- 
stituent particles. 

5. Conclusion 
The particles and the corrosion pits after exposure to 
the environment in a 2024-T3 aluminium alloy are 
characterized by random locations, random shapes, 
and random sizes. The random spacing of the particles 
and the corrosion pits can have a significant impact on 
the integrity of 2024-T3, at least for certain 
environmental conditions. Reliability computations 
must include the rather complex random geometrical 
properties of particles and corrosion pits. Corrosion 
pits tend to be regularly spaced, whereas particles tend 
to be more clustered. Pragmatically, the RSI hard- 
core model composed of circles with a random dia- 
meter and a random location is very reasonable as an 
approximation for the spatial pattern of the centroids 
of corrosion pits, based on the conditions considered. 
The RSI model is not applicable for modelling the 
spatial statistics of the constituent particles; however, 
the CRSI, which incorporates an underlying random 
parent process, does provide reasonable approxima- 
tions for the spatial pattern of the particle centroids. 
The simplicity of the models has two benefits. The 
models are computationally tractable, at least with 
standard simulation techniques, and they can be em- 
ployed for a variety of conditions. The qualitative and 
quantitative accuracy of the models are manifest from 
observations of the spatial patterns and the relatively 
tight confidence bounds on the computed statistics for 
K(t) and G(y). Further research, including modelling 
and experimentation, is needed to include the corn- 
bined effects of time and temperature, for a given 
environment. This will be considered in the future. 
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Figure 8 Estimation of/~(t) with the 99% confidence bounds pro- 
duced from the CRSI model for the 2024-T3 aluminium alloy 
specimen before exposure to 0.5 M NaC1 solution. 99 simulations; 
as-polished; 216 features; 75 parents; parent radius = 35 lain; max- 
imum number of offspring per parent = 6; Frechet cdf for offspring 
radius, p. 
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